Modification to Darcy model for high pressure and high velocity applications and associated mixed finite element formulations

نویسندگان

  • J. Chang
  • K. B. Nakshatrala
چکیده

The Darcy model is based on a plethora of assumptions. One of the most important assumptions is that the Darcy model assumes the drag coefficient to be constant. However, there is irrefutable experimental evidence that viscosities of organic liquids and carbon-dioxide depend on the pressure. Experiments have also shown that the drag varies nonlinearly with respect to the velocity at high flow rates. In important technological applications like enhanced oil recovery and geological carbon-dioxide sequestration, one encounters both high pressures and high flow rates. It should be emphasized that flow characteristics and pressure variation under varying drag are both quantitatively and qualitatively different from that of constant drag. Motivated by experimental evidence, we consider the drag coefficient to depend on both the pressure and velocity. We consider two major modifications to the Darcy model based on the Barus formula and Forchheimer approximation. The proposed modifications to the Darcy model result in nonlinear partial differential equations, which are not amenable to analytical solutions. To this end, we present mixed finite element formulations based on least-squares (LS) formalism and variational multi-scale (VMS) formalism for the resulting governing equations. The proposed modifications to the Darcy model and its associated finite element formulations are used to solve realistic problems with relevance to enhanced oil recovery. We also study the competition between the nonlinear dependence of drag on the velocity and the dependence of viscosity on the pressure. To the best of the authors’ knowledge such a systematic study has not been performed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem

In this paper we analyze fully-mixed finite element methods for the coupling of fluid flow with porous media flow in 2D. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The fully-mixed concept employed here refers to the fact that we con...

متن کامل

Numerical Simulation of Impact of Low Velocity Projectiles With Water Surface

In this article, Finite Element Method (FEM) and Eulerian-Lagrangies Algorithm (ELA) formulation were used to numerically simulate the impact of several low-velocity projectiles with water surface. Material models which were used to express behavior of air and water included Null material model. For the projectiles, rigid material model were applied. Results were validated by analyzing the impa...

متن کامل

Stabilized Mixed Finite Element Method for Transient Darcy Flow

Darcy flow is a steady-state model for laminar flow of a fluid through a porous medium. The present work proposes an extended model of laminar Darcy flow by introducing dynamic pressure and velocity to the classical formulation. The solution of the proposed time-space model is attained by discretizing the problem with a stabilized mixed Galerkin method in space and a forward Euler method in tim...

متن کامل

A review of the XFEM-based approximation of flow in fractured porous media

This paper presents a review of the available mathematical models and corresponding non-conforming numerical approximations which describe single-phase fluid flow in a fractured porous medium. One focus is on the geometrical difficulties that may arise in realistic simulations such as intersecting and immersed fractures. Another important aspect is the choice of the approximation spaces for the...

متن کامل

A Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations

In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1306.5216  شماره 

صفحات  -

تاریخ انتشار 2013